A novel approach to parameter uncertainty analysis of hydrological models using neural networks
نویسندگان
چکیده
In this study, a methodology has been developed to emulate a time consuming Monte Carlo (MC) simulation by using an Artificial Neural Network (ANN) for the assessment of model parametric uncertainty. First, MC simulation of a given process model is run. Then an ANN is trained to approximate the functional relationships between the input variables of the process model and the synthetic uncertainty descriptors estimated from the MC realizations. The trained ANN model encapsulates the underlying characteristics of the parameter uncertainty and can be used to predict uncertainty descriptors for the new data vectors. This approach was validated by comparing the uncertainty descriptors in the verification data set with those obtained by the MC simulation. The method is applied to estimate the parameter uncertainty of a lumped conceptual hydrological model, HBV, for the Brue catchment in the United Kingdom. The results are quite promising as the prediction intervals estimated by the ANN are reasonably accurate. The proposed techniques could be useful in real time applications when it is not practicable to run a large number of simulations for complex hydrological models and when the forecast lead time is very short.
منابع مشابه
Rainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملDevelopment of Stochastic Artificial Neural Networks for Hydrological Prediction
Many studies have used artificial neural networks (ANNs) for the prediction and forecasting of hydrological variables, including runoff, precipitation and river level, which are subsequently used for design or management purposes. However, although it is widely recognised that hydrological models are subject to parameter uncertainty, ANNs in this field have been almost exclusively deterministic...
متن کامل"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River
The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...
متن کاملOptimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm
This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...
متن کامل